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Canonical quantization of theories containing fractional 
powers of the d’Alembertian operator* . 

R L P G do AmaraltS and E C Marinof11 
t Departamento de Fisica. Ponlif’ieia Univenidade Cat6lica do Rio de Janeiro CP 
38071, 22452 Rio de Janeiro RJ, Brazil 
% International Centre for Theoretical Physics PO Box 586, Trieste, 34103, Italy 

AbslracL We present a canonical formulation for theories whose actions contain non- 
integer pawen of the dAlembertian operator and which were recently shown to play a 
central mle in (ail)-dimensional bosonktion. We show that these theories passes an 
infinite number of constrainls and use the Dirac method in order lo obtain the classical 
brackets. The causal and classical Green functions arc obtained and their meaning in 
terms of field expectation values is discussed. The Wightman functions are introduced 
and shown to lead 10 the microcausality principle. A mode expansion for the field is 
obtained. i n i s  permits the reobtention oi the iiiightman iunctians as vacuum expectation 
values of products of the basic fields. Creation and annihilation aperaton are naturally 
introduced bul. as shown, they are not related to definite mass particle states. This is 
also confirmed by the spectral decomposition of the Wightman functions. 

1. Introduction 

It has been recently shown that the massless Dirac fermion field can be mapped to a 
vector (gauge) field which has the interesting property of presenting a square root of 
the d‘Alembertian in its action [l, section 61. That work motivates the present study 
of this kind of actions and in particular its canonical quantization. 

There has long been an interest in non-local theories, as can be seen from the 
studies of Fokker and Feynman and Wheeler 121 on non-instanmneous interaction at 
a distance between particles in this first half of the century. In the 1950s there was a 
great deal of interest in non-local actions, as they were expected to be solutions to the 
infinities of field theory. Along this line of study we mention the Witensen-Moller 
model [3] and the work by Pais and Uhlembeck [4] and others [SI. Further, there 
has been a great deal of work done by Efimov and coworkers up to recent times [6], 
addressing themes like strong interactions, anomalies and the avoidance of monopoles 
in GUT models. Recently, there has been a revival of interest in non-local actions, 
partly due to the appearance of non-local vertices in string field theory [7]. The 
Green functions of arbitrary powers of the d’Alembertian operator in an arbitrary 
dimension are also being studied by Giambiagi and Bollini 1171, who apply a method 
due to Riesz [12] for the obtention of the Green functions and discuss the Huygens 
principle in arbritary dimensions. 

* Work partially supported by SCTPR, CAPES and CNPq. 
5 Permanent address: Instituto de Fkica, Univenidade Federal Fluminense. 24020, Niteldi RJ. Brazil. 
1 1  Permanent address: Depanamenlo de Fkica, Pontif’icia Univenidade Cat6lica do Rio de Janeiro, CP 
38071, 22452 Ria de Janeiro RJ, Brazil. 
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Our work depara from most of the previous literature in that the non-locality is 
present in the kinetic term of the action rather than being due to the interaction. 
One of the first problems that soon afflicted the Hamiltonian treatment of non-local 
theories was the obselvation that the Poisson brackets between the field and all 
its derivatives are zero. Here we show that properly considering the momenta as 
constraints leads to non-zero Dirac brackets. Our treatment is also different from the 
perturbative treatment of non-local theories presented in [8] in that we do not have 
an expansion parameter and no reduction of order 2 occurs. Instead, we will consider 
the whole series expansion and sum it. Further, our work differs from [I71 as our aim 
is to verify the applicability of canonical methods when discussing a definite class of 
non-local theories. 

The organization of the article is as follows. In section 2, the classical canonical 
formulation is applied and the Dirac brackets are obtained. The Hamiltonian is 
derived and shown to iead to the Euier-Lagrange equation as a canonical equation. 
The third section introduces the quantization of the theory with the study of the 
causal Green functions. We argue that the Feynman prescription is associated with 
the vacuum expectation value of the time ordered product of fields, as in local 
cases. The classical retarded and advanced Green functions are also evaluated. For 
a = $ these are shown to satisfy the Huygens principle. In the fourth section we 

the microcausality condition, in spite of the fact that the Lagrangian is non-local. 
We also derive the spectral representation for the Wightman function. Section 5 is 
devoted to the obtention of a mode expansion for the basic field in terms of creation 
and annihilation operators. These, however are not related to particle states with a 
definite mass, as is also indicated hy the spectral decomposition. Finally, in section 6 
we summarize our conclusions and comment on the applications to bosonization in 
2 f 1 dimensions. 

iiie Pau&jurdan .~ig'ntman iunciiuns and show ihat former sai&fy 

2. Canonical formalism for theories with pseudodifferential operators 

In this section we present the canonical formalism suited to theories envolving non- 
localities associated with pseudodifferential operators of the type If 1 - a is 
not a positive integer we are obviously dealing with an equation of motion that is not 
differential, but will involve a generalization of differential operators. In this work, 
we will consider the theory of a single scalar: 

where (-O)-" = J[d3~/(2n)3](,2)-a, '~r,  and we are considering a (2 + 1 ) -  
dimensional space, keeping in mind the application to bosonization. 

We will consider the more general case in which ( -U)-a is exchanged by (-0 + 
x)-", where x will eventually be sent to zero at the end. With this we can take the 
formal series expansion in powers of the d'Alembertian resulting in an action with all 
derivatives present 
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In this expresion a, a x(-"+."). 
There is a well-known method for the canonical treatment of higher derivative 

theories [9, lo]. Having realized that our theoly can be considered as such we can 
apply the results of that treatment to our case. We will not present a full review of 
that treatment here, but stress its most important features. Assume the Lagrangian 
contains derivatives up to the order N .  In this method the field .$ and its time 
derivatives, $"I, up to the order N - 1 are taken as independent variables defining 
the coordinate space (&") represents the n th  time derivative of 4). The momenta 
are defined in such a way that the variation of the action, under the assumption of 
Lagrangian equations of motion, is equal to the ordinary expression [lo] 

The $") together with the associated momenta U[.") define the phase space . 
The Lagrangian equations are obtained with fixed variations of the fields and 

derivatives on the boundaries of the integration region in the action. For simplicity 
these can be taken as the infinite space in the extrema1 times. Poisson brackets are 
defined in such a way that each variable of the coordinate space obep  a canonical 
relation with its respective momenta all other brackets being zero. The Hamiltonian 
is defined by the Legendre transform of the Lagrangean, taking into account all 
derivatives of the fields composing the coordinate space. The canonical equations of 
motion then result from the Poisson bracket of each variable and the Hamiltonian, 
just as in the first order case. 

This scheme has been applied to a wide range of higher-derivative theories [lo], 
having been used together with the Dirac method whenever constraints are present. 
We are going to apply this method to the infinite derivative case and study its conse- 
quences, verifying that it really gives sound results. 

One has two strategies to follow according to whether one truncates, or not, the 
alluded series expansion. Our strategy in this work is to take the infinite case and deal 
non-pertubatively with the whole series and try to obtain results under the assumption 
of its summation. In this approach the fact that each term of the series diverges when 
the auxiliary parameter x is finally set to zero is by no means a catastrophe as long 
as the sum is well behaved in this limit. This is analogous to what happens in the 
computation of the effective potential when one expands around a massless theory 
and the whole sum is finite, in spite of the fact that each term is infrared divergent 

We obtain first the Euler-Lagrange equation. Varying equation (2.2) with respect 
WI. 
to the field and its derivatives we get 

m 

= 0. 
%=O 

(2.4) 

Summing the series we have the non-local equation of motion 

U(-0 + x)-"+ = 0. (2.5) 

Let us perform now a canonical transformation which is legitimate for finite N, 
and we assume also holds for the infinite case. As we will see this will result in an 



5186 

enormous simplification. Let us take as independent variables the field 4, together 
with all of its derivatives, which, for later convenience, we rearrange so that the new 
independent variables are q5,, = On+ and $,, = U"$. The momenta associated with 
these new variables are given by the variation of the action around a solution of the 
equation of motion 

R L P C do Amaral and E C Marino 

Bmking equation (2.6), we obtain 

In the truncated formalism one can see that some of the momenta are not inde- 
pendent variables as they can be expressed as linear combinations of variables in the 
coordinate space. In our case all of them are of this sort, as the coordinate space 
encompasses all the derivatives of the field. The momenta definitions have to be 
seen as constraints. We have thus found the primary constraints of our system. In 
order to see if they are first or second class we calculate the Dirac matrix between 
the constraints, which are 

x, = n, - TIn' 

A, = Pn - 'P,'. 

Here 'It,' ('Pn') are the explicit expressions for the momenta in terms of coor- 

The computation of the Dirac matrix is straightfonvard as long as one deals 
dinates (equations (2.7) and (2.8)). 

carefully with the infinite summations present. The result has the structure 

0 

(2.10) 
B n 7 m ( x j  y'l D = [  iXn(Z) 9 Xm(Y )I {A,(%) ! A,(Y)l I - [-Bn,&,Y) 

I x ~ ( " ) , x ~ ( Y ) ~  { x n ( ~ ) > X m ( ~ ) l  - 0 

with 

B",m(x>Y) = t L ( " ) > L ( Y ) I  = -a.+,h2(z - Y). (2.11) 

As a working hypothesis we assume that this matrix is not singular. It follows 
that there will be no secondary constraints. The evolution of primary constraints by 
means of the total Hamiltonian will only fix the Lagrange multipliers and not imply 
new constraints. In the finite case, i.e. truncating the series, one would also obtain 
some momenta expressed as combinations of variables of the coordinate space. In 
that case the finite number of independent variables allows one to infer the non- 
singular character of the Dirac matrix. The existence of the inverse of the Dirac 
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matrix between the primary constraints is thus expected from the experience with the 
finite case. 

The obtention of the explicit form of D-' is certainly not an easy task. We are 
nevertheless going to see that in spite of this we can characterize the structure of the 
model without its explicit knowledge. 

We introduce then the formal inverse of the Dirac matrix, 

Canonical quantization and the d illembertian operator 

with 

(2.12) 

(2.13) 

The calculation of the Dirac brackets is now straightforward, yielding the result 

(2.14) 

It is here that the sensible choice of independent variables comes into play. If 
the Dirac matrix did not have the simple form we would be unable able to guess its 
inverse form and what follows would be much more difficult. 

We introduce now one more variable, p = (-0 + x)-"+. Let us compute the 
Dirac bracket between 4 and p .  Expanding the operator (-U+ x)-", in accord with 
our formalism we obtain 

(2.15) 

In the same way we can obtain the whole structure 

We stress that the above brackets are the result of infinite summations of the 
series. So we understand that they have a more fundamental meaning than relations 
(2.14). For instance, when finally x -+ 0 the above result is unchanged while in 
I V I Y L I " I . 0  d - t h n ~  19 I A \  tho n;r.lr -..".. mstriv .L.Y..M d l  ..... nivproe "..-.a-. w e  rcob!ai" relations (2.16) also 
in the quantum treatment; then they will be the result of the computation Of the 
commutation relations by means of the explicit knowledge of the expectation value 
of the product of two fields. We are going to see also that this result has important 
consequences when applied to bosonization. 
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We can now consider dynamics. The Hamiltonian is defined just by the Legendre 
transform of the Lagrangian: 

This can be worked out to the form 
m m m 

ff = Id'zCf(a,4,(r)Ca,4;(Z)~,+~ "=O j=O -4n+I(z)C4,(z)~n+i).  j = 1  (2.18) 

We can now calculate the canonical equations of motion A = {A, H). When 
applied to 4" the result is an identity: a,, = 6". Observe that this is just what 
occurs in the local case to  the evolution of 4. For the evolution of b(= CQ,,~,) 
one obtains 

m 

J n=0 k , j = l  
m 

= v'dz) + a ; + k - i $ k ( z )  6;,o = V 2 d z ) .  (2.19) 
k , j = l  

- 'lne iast equation k just the Euler-Lagrange equation reobtained by Hamiltonian 
methods. Note that it can be rewritten as (-0)l--4 = 0, when x is set to zero. 
Thus, we reach the conclusion that the formalism proposed has been able to perform 
its task, giving not only a sound canonical structure but also the correct equation of 
motion. One might argue that this formalism is somewhat unuseful, as it requires 
knowledge of all time derivatives of the field in order to have information on the evo- 
lution of the field. It says nevertheless that not all derivatives are finally independent 
but are related by dynamics. The fact that the evolution equation requires knowledge 
of all field derivatives is a manifestation of its non-local character as long as the 
behaviour of the field on a spacetime point depends on its values in an extended 
region of spacetime, and not just in the vicinity. 

Let us now once more consider the equation of motion in its series expansion 
form, (equation (2A)): We point nut that the e q d o ~  nf mat io~  ~ E S  E digerefit 
character from the usual cases. Namely, we observe that, as all derivatives belong to 
coordinate space, the equation of motion is indeed a constraint. We emphasize that 
this constraint does not appear as a secondary constraint from the Dirac algorithim in 
the usual sense. We have already seen that the evolution of the primary constraints 
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only fixes the Lagrange multipliers. We have then to consider the following question: 
are these constraints respected by the Dirac brackets? One becomes easily convinced 
of the negative answer. This is expected as we have not considered them when 
establishing the Dirac brackets. One can envisage the possibility of pursuing further 
the Dirac method and adding the new constraints to the Dirac algorithim. 

The new constraints should be taken as an infinite number of equations. Besides 
C = a,Ontl+ we also have E, = 0 ° C  and i, = On(. It is clear what we 
should do now: calculate the Dirac matrix between the new constraints, using our 
hitherto obtained Dirac brackets, invert it, and redefine the Dirac brackets. One will 
find in this procedure the same kind of difficulties occurring previously. The new 
Dirac matrix is 

with 
m 

ci,j(3c3Yj = - a , , a p B ~ k + l , j + p + ] ( z , y ) .  (2.20) 
k,p=O 

Once again its non- singular character must be assumed. The inverse of D' must 
be defined by the formal properties 

The new Dirac brackets will require a redefinition of the unknown constants in 
relations (2.14), 

{d,,(z),+,,,(~))** = B;,!,,(z,yj + /d2zd'z'  5 a ia j  
k.f . i , j ,=O 

x ~ ~ , ~ t i t l ( z , z ) C ~ , ~ ( z , z ' j  B;&+l,m(z'.Yj 

still with 

{+*(z),+,,,(Y)l'* = {dn(z),dm(Y))** = 0. (2.22) 

With these new Dirac brackets we can once again compute the Dirac brackets be- 
tween the fields + and p. Using equations (2.21) and (2.22) we obtain that equations 
(2.16) remain unchanged. 



5190 R L P G do Amaral and E C Marino 

Furthermore, in the same way we performed the calculation of equations (2.16), 
we can now obtain the Dirac brackets between the new variables (-0 + x.) 6 and 
(-0 + x)-'-"4. We obtain the result 

{(-U + X) 6(z), (-0 + x)-'-"&Y))" = b2(z - Y). (2.23) 

In the case where we have an interaction term like V (  4) the above treatment will 
imply the equation of motion: -O(-O + = V ' ( 4 ) .  This is just the expected 
Euler-Lagrange equation. 

We should also comment on what happens when -a is an integer or zero. In this 
case we will not be dealing with non-local theories but with a local one. For a = 0, 
for instance, the action still has the general form of equation (2.2) but with a, = 0 
for n > 0. We can see, nevertheless, that the Dirac brackets which result from the 
infinite summation of series such as {+, b}' go smoothly to the ones obtained from 
the treatment of the resulting model. In the case a = 0, p is identified with 4 itself 
and relations (2.16) are just the usual ones. 

3. Quantization: Green functions 

3.1. The causal Green functions 

Let us now turn our attention to the quantum case. We have an equation of motion, 
a quadratic Lagrangian (2.1), and a classical canonical structure to guide us. We 
will start by computing the relevant Green functions and analysing their physical 
meaning in terms of expectation values of products of fields. We are simply going to 
illustrate that the quantum treatment of these non-local free theories will still present 
interesting features. In some sense these theories behave more like interacting rather 
than free theories. 

First of all, we calculate the expectation values of the time ordered product of two 
fields. As the Lagrangian is quadratic, the causal Green function is just (-U)-1ta. 
We have to ascribe a prescription to the contour not of a pole but of the branch 
point and the cut associated with the root. Adopting the Feynman prescription, 
kz -* kz tie, we get the result (appendix 1) 

with t = zo, r = 121, and 

P, = - ( 2 r r ) - 3 / 2 2 2 0 - 1 / z r ( a  t f ) / r ( l -  a). 
The cut has been chosen in the positive IC2 (or 2) real axis (figure 1). 
We are now in position to ask the following question: is a field with commutation 

rules taken from the above Dirac brackets a quantum solution to the non-local equa- 
tion of motion derived from the action? A way to answer this question is to find if the 
expectation value of the time ordered product of two fields is just the causal function 
evaluated above. 'Ib find this out we apply the operator (-0 + x)'-" to such an 
expectation value in order to see if it results in a tridimensional delta function. In  this 
computation we are going to use the equal time commutation rules taken from the 
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Im(ko) 

F k r r  1. Integration paths tor the computation of the Green and Wtghiman funclions: - - - &"; - E,; . . . . . n . Y + ,  - - - Y r e , .  n 

(first) Dnac brackets of the previous section by use of the correspondence principle. 
First note that, using equations (2.14), 

OTO? 4 ( ~ )  = o(e(zo - Y O ) Q ( ~ ) ~ ( Y ?  + o b o  - z o ) 4 ( ~ ) 4 ( = ) )  
= a,[Ta"qqz) @(y)) (3.2) 

= TO+(z)+(y) + i6(z0 -- Y' )B&~,  Y) 

By iterative application of the d'Alambertian and use of equations (2.14), we obtain 
n-I 

onT4(z)4(y) = T ~ " ~ ( z ) + ( Y )  + i cn1(6(z0 - Y ~ ) B ; ? , - ~ , ~ Z ~  Y)) (3.3) 
>=a 

Following our previous steps, we expand the operator O / ( - 0  + x)" in powers 
of 0 and apply it to the time product: 

m m n  

= E a ,  TO"+'#(E) 4 ( y ) + i  ~ n O m 6 ( 2 0 - ~ 0 ) B , ! m , ~ ( z , ~ ? .  

(3.4) 

" = O  n = o m = o  

By redefining the summation indices we obtain the following expression for the 
last term in the previous formula: 

m 

= - i 
= - i h3(z - y).  

0" (6(z0 - ~ ' ) 6 , , ~ 6 ( z  - y)) 
m=0 

(3.5) 
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Due to the field equation 0(-0 + x)-"+(z) = 0, the first term of the same 
expression is zero: 

m 

a,TO""+(z) +(Y) = T ~ P ( ~ ) + ( Y )  = 0. (3.6) 
n=0 

Summing up, we have shown that 

D(-0 + x)-"(T+(z)+(y)) = -iS3(z - Y). (3.7) 

This shows that the first Dirac brackets obtained in the previous section are 
enough to attribute to the function (-i)(T++) the character of the inverse of the 
operator appearing in the action. It is interesting to note that a prescription is already 
needed in the operator definition and not only in the Green function 

Does the above reasoning also hold if one uses the double-star Dirac brackets? 
Indeed, if one performs the calculation with the new Dirac brackets one will see 
that instead of (T&) the Dirac delta function will result for the non-local operator 
applied to(-O+x)"(Tp+) = (-O+x)*(T(-O+x)-"++). Using thesinglestar 
brackets both functions will have this properly. Indeed, the above calculation actually 
means that (-0 + x)-"T++ = T (  -0 + x)-"++ for one-star Dirac brackets (this 
property is easily verifyied when --a is a positive integer, i.e. for local cases). So we 
see that there is an inconsistency between the implementation of the equations of 
motion as constraints and the Green function character of the expectation value of 
the time ordered products of the basic field 6. We will return to this question in the 
next section and keep interpreting (I"++) as the causal Green function. 

We add one more comment in relation to this. We could also have started with 
the Lagrangian L = +(-U + x)'-"+. The single-star Dirac brackets would be 
subtly changed ( B , , ,  -+ Bh,, = - a,+, + xa,,+,+') and the basic Dirac bracket 
{+, i~}* = i @ ( z  - y) would still follow, but only if 1 - -a > 0, i.e. positive powers 
of the d'dembertian. The equation defining the propagator, with single-star Dirac 
brackets, would be (-0 + x)'-"(T+(z)$(y)) = -i63(z - y). It is tempting to 
associate this with the fact that only for 1 - oi > 0 does the operator (-0 + x)'-" 
mean generalization of the differential operators 0" (121. 

3.2. The Classical functions 

In appendix 2 we calculate the classical Green functions (retarded and advanced) 

d3ke-ik= 
LIPet = - 

[(ko + ic)2 - k2]'-" 

= - ~ , , g ( - ~ O ) [ ( 1 2  - T 2  + ic)-(*+1/2)  - ( 1 2  - T2 - iE)-(*+1/2)]. (3.9) 

These distributions have been studied by Riesz [12] who showed that they are 
indeed inverses of the powers of the d'Alembertian when 1 -a is a positive intenger. 
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In other cases they are identified with the O'-" operator or its inverse, according to 
whether a - 1 is greater or smaller then zero [3]. Note that in the E -+ 0 limit only 
the discontinuity along the cuts will contribute. It follows, noting that the cut lies 
on the positive z2 axis, that the classical functions have the interesting property of 
respecting causality although the Lagrangian itself does not suggest it! Note further 
that for a = $, in particular, the expression within brackets in equations (3.8) and 

the light-cone surface, implying that not only causality but also the Huygens principle 
would be respected. This result has also been obtained in [17] by use of the Riesz 
method. It is interesting to remark that the a = f case is precisely the one relevant 
for the hosonization [l]. 

(3.9) a deita :uiic;ioii -we see [bat the ciassiiiij funciions have Suppor~ on 

4. Quantization: the Pauli-Jordan and Wightman functions 

In order to have a complete description of the theory we have to define the Pauli- 
Jordan function and its negative- and positive-frequency parts. We are going to 
ascribe a definite meaning to these functions that furnish the expectation value of the 
ordinay product of two fields. Notice that we need a function that can be split into 
positive and negative frequencies. Further, it should be a solution of the equation of 
motion and coincide with the local function for a = 0. We define 

DgJ = DT - DE and D_"(z)  = D;(-z) .  (4.1) 

We take as the Wightman functions DT(z )  the following: 

DI;(z )  = - / d 3 k 0 ( k 0 ) [ 1 / ( k a  + ie)'-" - l / (k2  - i~) ' - " ]e - '~"  (4.2) (243 

where the cut is in the positive real k2 axis (figure 1). 
Note that when a = 0 the last expression takes the usual form. In this case the 

difference in the integrand is just a representation of the delta function. Note also that 
due to the cut on the positive ko axis the function comprises only positive frequencies. 
This last point deserves to be stressed: these functions present a decomposition into 
positive and negative frequencies that are respected by Lorena transformations. 

With the above prescription we find 

D? = p,[(t - ic)' - 7-2]-(*+1/2). (4.3) 

This strongly suggests a generalization of the ordinary case. Indeed, it can be 
shown that when a = -n (n = 1 , 2 , .  . .) the above function may be obtained from 
the treatment of the resulting higher (finite)-order theories. These functions represent 
an analytic interpolation between higher-order theories. 

Can these functions really be associated with the expectation value of the simple 
product of two fields? First we note that with the Dt we obtain the equal time 
commutation relation read from the Dirac brackets by operator product expansion. 
One can easily see that the commutators [On4,0n4]  and [0"&0"4] vanish, while 
[Om4,0m44 may be non- zero. This is obtained by taking the difference between 
D;(z-y) and D $ ( y - z ) ,  associated respectively with (+(z)4(y)) and (4(y)4(z)), 
and applying the appropriate powers of 0. As we deal with equal time commutators 
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we have to make zo - yo = 0 in the final expressions. The commutator of 4 and 6, 
for instance, is seen to be 

R L P G do Amaral and E C Marino 

(4.4) 

The above expression can be seen as a sequence of functions associated with a 
distribution. It is clear that it is different from zero only for z = y. It is easy to 
show, by integrating in space, that they are more singular around z = y than a delta 
function for a > 0. Renormalizing the product by multiplication of the fields by E" 

one obtains a bidimensional delta function sequence. In this way we obtain all the 
zero Dirac brackets as commutation rules. The non-zero ones have the forementioned 
singular character. 

equation (4.12)) it will follow that the commutator of 4 and p is the delta function, 
without resort to any infinite renormalization in the point-splitting calculation. 

Further, if the D+ functions are really the above expectation values, then they 
might themselves satisfy the equations of motion. One possible way to verify this 
would be simply to  apply the operator (-U)'-" inside the Fourier transformation 

ivioreov.er, we ifienicy <4<zjp(y)j .With E;(z - y), as .w.e .w.iii jOOil arb.ue 

intnnr-1 Than ..,n..lA A n o l  s i i i + h  n m A . . r r .  nf r h a  tirnn L 2 8 1 ,  / I  L 2 L i C 1 1 - * - 7  I t  L 2 -  
" L L l ~ L , x " .  I..C.l " L L l  n""," Y I Y .  "llll Y."""CL" "l $..I ,, \', { "  T B C ,  ' I \ %  - 

If these products are redefined as ( l / ( k 2  +iE) ' -"-P - l / ( k 2  - i ~ ) ' - O - o  ) 
one would obtain the expected equation of motion for an appropriate value of p ,  
namely p = 1 - a. 

An alternative and more instructive way of obtaining the  equations of motion 
is through the use of the spectral decompasition, as we will show. Note that for 
non-integer rr t he  Dg functions can he reexpressed as 

where (k;)(,-') = O(k2)(k2)(G- ' )  and b, = Sexp[irr(a - ~ ) ] s i n [ r r ( l  -a)]. 

m2)dm2 = 1.  Changing the order of integration to 
We can introduce into the integrand the resolution of identity SOm 6 ( k 2  - 

where we have introduced the massive local function 

-L""-.̂  *I.". :. ̂̂.:̂ ĉ  ̂.L̂  ...a..- ;-- 
""JCL*C L I I a L  LL 3dllS11GS LLlG Grgcrlvaluc Cquauorl 

- O D : ( z , m )  =m2D?+(z,m). (4.8) 

Equation (4.6) shows spectral decompasition of the D, functions in terms of 
local ones. It is seen that all the masses of the local functions contribute. We can 



Canonical quantization and the d'Alemberrion operator 5195 

now begin to understand the spectrum of our model. The important point to be 
stressed here is that the functions appearing in equation (4.6) are the local massive 
D,  functions. In other words the expectation value of the product of two non-local 
fields can he expressed as the integral in the masses of the expectation value of the 
product of local massive fields. 

We can now show how the equation of motion is satisfied by the D+"(z - y), i.e. 
by the expectation value of the simple product of two fields. 

We have to apply ( - 0 ) l - O  to D;(z). We first factorize the operator (-O)'-" -, 
-U( -0)-"t6/', and apply the last factor first. Here 6 is a regulator that will be set to 
zero afterwards. Using the spectral decomposition equation (4.6) and the eigenvalue 
equation (4.8), the application of the non-local operator is now transparent: 

m 

(-O)-mt6/2D;(z) = b, 1 dm2(m2)0-1(-O)-ot6/2D~(z,m) 

Of course, an analytic continuation in the &plane is implied here. When the limit 
6 -+ 0 is taken, appears there a pole in 6: 

(4.10) 

The last factor is not singular so we leave it aside. The first one is singular in the 
limit 6 + 0: 

D + ( z , m ) =  lim dmm6-' [D! ( r ,O)+O(m)]  l i rn1 'dmm6- '  6-0 6-a 

+ finite terms 
6-a 

(4.11). 

When 6 goes to zero the singularity is removed by multiplication by 6, i.e. the 

(-0)- D,"(z) = D!(z). (4.12) 

The equation of motion then follows upon application of the remaining (-0) 
factor. We stress here the privileged role played by the local zero-mass field in this 
calculation. 

Furthermore, the above computation shows that ( - U ) a D ; ( z )  = constant. 
Dyta(z). When p is an integer the constant factor is 1. In this last case the 
same result can be obtained by direct differentiation. 

We also point out that the following relations between the various functions still 
hold in the non-local case: 

expression is redefined by its residue. The result is the usual local function: 

oh(.) = -Do ad"(") + 

(4.13) 
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The above formulae show some similarities between local and non-local theories. 
In particular the causal functions can really be interpreted as expectation values of 
time ordered products of the fields. Also, the Pauli-Jordan functions, or field com- 
mutators, are expressible by use of the classical (retarded and advanced) functions. 
This implies that the fields, although satisfying a non-local evolution equation, still 
satisfy the microcausality principle. The main differences from the local theory are 
related to the spectrum as is indicated by the spectral representation (4.6). This will 
also be seen in the next section. We note also that, in the particular case a = $, we 
obtain the quantum version of the Huygens principle: the fields commute out of the 
light-cone surface. 

5. Mode expansion 

In order to have a complete characterization of the quantum theory it is important 
to have a mode expansion which serves to expose the Fock space structure of the 
model. A natural procedure would be to search for a complete set of solutions of the 
equations of motion and associate with each of them a quantum excitation. In our 
case we do not possess such a set. It is not at all clear what are the complete solutions 
of a non-local equation such as (-D)l--f = 0. We have seen, nevertheless, that the 
Df(z  - y) functions do, in a definite way, satisfy these equations. We shall thus try 
to obtain the mode expansion based upon knowledge of this function. 

In contrast to the local case the D, function is not expressible as a bi-dimensional 
Fourier transform (see equation (4.2)). It does not contain a delta function This 
suggests that we should try an expansion of the field with a tridimensional instead of 
a bidimensional integration. In addition, this we have already seen that the condition 
of microcausality holds in this case, assuring a unique decomposition between positive 
and negative frequencies. This suggests, then, the following expansion for +(z) 

where we have defined 6 * ( k 2 )  = l / ( k z  + i€)'-* - l / ( k 2  - ic)'-*. 
If the + ( k ) ( + t ( k ) )  are taken as annihilation (creation) operators of excitations 

with trimomentum k and ascribed the commutation rules [ + ( k ) , + t ( k ' ) ]  = 6 ( k  - 
k ' ) / 6 - * ( k 2 ) ,  we readily see that the operator has the expected correlation function, 
reproducing, up to a constant factor, the D,  function and consequently also the D,, 
and the D, functions. 

Let us remark on one point here. It is tempting to define +(z) 3 (-O)*'p(z), 
where 'pis the usual local field, with its usual mode expansion. With this, the non-local 
equation of motion would follow from the local one: ( -K I )~ - *+ (z )  = -Oq(z)  = 0. 
The definition of (-O)"'p(z) is nevertheless missing. In momentum space. there 
appears kz*63(k2)  and this does not have a definite meaning as a distribution. 

In contrast to the local case the operator field not now does Satisfy the equation 
of motion as a strong relation, but all expectation values of arbritrary local products 
(that do not involve non-local powers of the d'Alembertian among them) do satisfy 
it. The reason is simply that such expectation values involve the D,  functions which 
satisfy the proper equations of motion, in the above-explained sense. 

Now what kind of excitations do +(k)t create? First of all they do not represent 
different momenta of the same particle as they do not have a unique mass associated 
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with them. We have already Seen the appearance of such indeterminate mass when 
we performed the spectral decomposition of the functions D,. Although the basic 
excitations are not particles, there is a non-local one which has a particle content. 
Indeed we have seen that in the calculation of the equation of motion the free 
massless scalar plays a privileged role. In other words, the expectation value of 
d(-O)-a+ is equal to the expectation values of two local fields. This suggests 
treating the local massless particle as a non-local excitation playing a privileged role 
in the Fock space. 

Having this characterization of the Fock space we can now define normal ordering 
of any expression involving the fields in the usual way. This is crucial in applications 
to bosonization in three dimensions where we will have to  deal with exponentials of 
the fields [l]. 

Let us point out what happens to the expansion in the local limit when oi i 0. 
As already remarked, the D ; ( I ) ,  which is obtainable with the help of expansion 
(S.l), goes to the local function by acquiring the factor a(.!?) in momentum space. 
Indeed 6 ” ( k 2 )  is easily identified, up to constant factors, with derivatives of the delta 
function. The creation and annihilation operators, with I C 2  different from zero do not 
contribute in this limit. This allows one to rewrite the expansion of the field in the 
usual way. In other words, the Fock space will be reduced, with the excitations with 
‘wrong’ dispersion relations decoupling from the remaining physical sector. 

6. Conclusion 

In this work we considered the extension of the canonical treatment of systems with 
higher derivatives [l, 21 for the case where an infinite number of derivatives is present. 
We applied this method in the canonical formulation of non-local theories containing 
pseudodifferential operators in the kinetic term. The interest in such theories comes 
from the fact that they appear in the process of bosonization of the Dirac fermion 
field in 2 + 1 dimensions 111. 

Starting from the free Dirac Lagrangian, it is possible to show [l]  that under a 
non-local transformation similar to that of Foldy and Wouthuysen one arrives at a 
Lagrangian involving two complex spin-zero fields whose actions are given by (2.1) 
(with a = i). These spin zero fields, in their turn, may be expressed in terms of a 
vector field whose lagrangean again possesses the non-local operator 0’l2 [I]. Thcse 
non-local theories were only treated within the functional integral formulation in [l], 
hence the interest in having an insight into their canonical quantization. This is what 
we pursued here in the case of a scalar field. In another work (151 we studied the 
case of vector field theories containing pseudodifferential operators. There we show 
that using the canonical quantization of the vector field and the representation of 
spin zero fields in terms of exponentials of it [l], the Wightman functions of the later 
can be obtained in terms of the Wightman functions of the former. 

The canonical structure that we obtained in the present paper is characterized by 
the absence of independent momenta and by the fact that the equation of motion 
is ultimately a constraint between the variables in coordinate space. This fact is 
related to the lack of a proper initial-value (classical) problem since there is no finite 
number of derivatives defined on a spacelike surface determining the field values in 
all spacetime, Nevertheless, we have shown that a field quantization which paralells 
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this classical structure is still possible. A quite remarkable fact is that the Pauli- 
Jordan commutation function respects the microcausality condition, in spite of the 
non-locality of the Lagrangian, and for the special case of a = $ the classical Green 
functions obey the Huygens principle. An interesting feature is that the quantum 
field does not satisfy the equation of motion as a strong relation but as a weak 
one. We have also seen that a proper definition of vacuum expectation values of 
simple products of fields yields a mode expansion which leads to a natural definition 

These creation and annihilation operators, however, are not related to definite mass 
states, as is also indicated by the spectral decomposition of the Wightman functions. 
In this sense, the non-local theory resembles an interacting one, in spite of being 
quadratic. An interesting fact is that the non-local field p ( z )  creates states with a 
definite mass (equal to zero). 

We finally comment that the lack of a particle content associated with the basic 
field is analogous to what happens in (1 + 1)-dimenisonal bosonization where the 
massless scalar field also does not have a well-defined particle content. The lack of 
a definite mass in this kind of non-local theory suggests that the basic fields should 
transform under a non-unitary representation of the Poincar6 group. This deserves 
further investigation. 

R L P G do Amaral and E C Marino 
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Appendix 1 

Let us compute here the Fourier transform in equation (3.1): 

(Al.l) 

Here and in the following, w = Ikl. 
According to (13, p 3211 this can be rewritten 

(A1.2) 
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The angular integration is easily performed [13, p 9521, giving the result 
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e(i*/2)(*--1/2) 
D:(-+) = 

2+3/2r(1- a) 

x lm Jo(wlzl)  Km-1/2[iw(I-+oI - ~ E ) ] w ~ + ' / ~ ~ w  (A1.3) 

where we have expressed Wo,m-l/2 in terms of the Bessel function Km-l  [13, p 
10621. We also use the fact that w > 0 to redefine E .  Using [14, p 365jthe last 
integral is evaluated. %king the limit E + 0 we obtain equation (3.1). 

The same result has been obtained in [la, p 3651. Note, however, that our 
convention for the position of the cut differs from that in [16]. 

Appendix 2 

Let us compute now the retarded function: 

+m dkOe-ikozo 

[, ( iw + E - ikO)I-m(-iw + E - i k 0 ) l - m  

Using the result of [13, pp 320, 10591, we get 

('42.1) 

The angular integration is performed as shown above and the integral of the 
double Bessel functions is found in [14, p 2101. The result (equation (3.8)) then 
follows. 

The advanced functions are obtained from the above results through the trans- 
formation k -+ -k and -+ + --+. 

Appendix 3 

The DY(-+) function (equation (4.3)) may be calculated along the lines of the previous 
appendices or using the inverse Fourier transform to the Dpet(z) functions and 
making -+ +.+ k and a - (4) - a. 
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